[吉他] 光良-傷心地鐵

Posted on November 08, 2017 in Life. View: 174

有窩表演


Continue reading

實作Tensorflow (2):Build First Deep Neurel Network (DNN)

Posted on November 07, 2017 in AI.ML. View: 5,671

增加Hidden Layer / Activation Function的選擇 / Mini-Batch Gradient Descent / Regularization / Weight Regularization / Dropout / Optimizer的選擇 / 來看看程式怎麼寫


Continue reading

實作Tensorflow (1):Simple Logistic Classification on MNIST

Posted on October 23, 2017 in AI.ML. View: 5,674

MNIST Dataset / Softmax / Cross-Entropy Loss / 分離數據的重要性 / Tensorflow工作流程 / Tensorflow的基本「張量」元素 / Session的操作 / 第一個Tensorflow Model


Continue reading

股票策略:移動停損法

Posted on September 05, 2017 in Reading. View: 6,480

簡言之就是「從買入當天開始算起,以過程的每天當中最高股價當作基準點,向下去設停損點,或是停利點,低於這點就當天賣,或隔天賣」


Continue reading

如何辨別機器學習模型的好壞?秒懂Confusion Matrix

Posted on August 04, 2017 in AI.ML. View: 125,240

本篇介紹包含Confusion Matrix, True Positive, False Negative, False Positive, True Negative, Type I Error, Type II Error, Prevalence, Accuracy, Precision, Recall, F1 Measure, F Measure, Sensitivity, Specificity, ROC Curve, AUC, TPR, FNR, FPR, TNR, FDR, FOR, PPV, NPV, 算數平均, 幾何平均, 調和平均


Continue reading

Python玩數據 (3):Numpy [2/2]

Posted on May 06, 2017 in CS. View: 4,933

產生ndarray的其他方法 / Broadcasting / Slice and Fancy Indexing /


Continue reading

機器學習技法 學習筆記 (7):Radial Basis Function Network與Matrix Factorization

Posted on April 22, 2017 in AI.ML. View: 15,113

本篇內容涵蓋Radial Basis Function (RBF) Network、K-Means、One-Hot Encoding和Matrix Factorization


Continue reading

機器學習技法 學習筆記 (6):神經網路(Neural Network)與深度學習(Deep Learning)

Posted on April 17, 2017 in AI.ML. View: 35,249

本篇內容涵蓋神經網路(Neural Network, NN)、深度學習(Deep Learning, DL)、反向傳播算法(Backpropagation, BP)、Weight-elimination Regularizer、Early Stop、Autoencoder、Principal Component Analysis (PCA)


Continue reading

Python玩數據 (2):Numpy [1/2]

Posted on April 17, 2017 in CS. View: 13,689

Python常見的資料型別 / Numpy的數學運算 / Numpy基礎元素:ndarray / Numpy的矩陣運算


Continue reading

大數據 Big Data:A Revolution That Will Transform How We Live, Work, and Think

Posted on April 07, 2017 in Reading. View: 704

樣本=總體 / 允許不精確 / 「是什麼」比「為什麼」還重要 / 大數據時代的商業變革 / 全息社會


Continue reading

機器學習技法 學習筆記 (5):Boost Aggregation Models

Posted on April 02, 2017 in AI.ML. View: 5,011

本篇內容涵蓋AdaBoost (Adaptive Boost)、Gradient Boost、AdaBoosted Decision Tree和Gradient Boosted Decision Tree (GBDT)。


Continue reading

輕鬆談演算法的複雜度分界:什麼是P, NP, NP-Complete, NP-Hard問題

Posted on March 30, 2017 in CS. View: 76,162

Turing Machine / 時間複雜度 / P=NP? / NP-Complete 問題


Continue reading

機器學習技法 學習筆記 (4):Basic Aggregation Models

Posted on March 29, 2017 in AI.ML. View: 8,368

本篇內容涵蓋Blending、Bagging、Decision Tree和Random Forest


Continue reading

讀書手札:大腦解密手冊 The Brain: The Story of You

Posted on March 24, 2017 in Reading. View: 808

大腦的可塑性 / 意識與無意識 / 腦中的交戰網路 / 科技將如何改變大腦的未來


Continue reading

Python玩數據 (1):安裝Python, IPython, Numpy, Pandas

Posted on March 20, 2017 in CS. View: 5,727

安裝Python, IPython, Numpy, Pandas


Continue reading

從《如何閱讀一本書》想像一種不同的知識呈現方法

Posted on March 18, 2017 in Reading. View: 955

書籍與網路的PK / 閱讀的層次 / 檢視閱讀 / 分析閱讀 / 主題閱讀 / 書籍與網路的第二回合PK


Continue reading

機器學習技法 學習筆記 (3):Kernel Regression

Posted on March 15, 2017 in AI.ML. View: 6,291

本篇內容涵蓋Probabilistic SVM、Kernel Logistic Regression、Kernel Ridge Regression、Support Vector Regression (SVR)


Continue reading

機器學習技法 學習筆記 (2):Support Vector Machine (SVM)

Posted on February 20, 2017 in AI.ML. View: 11,884

本篇內容涵蓋Hard-Margin Support Vector Machine (SVM)、Kernel Function、Kernel Hard-Margin SVM、Soft-Margin SVM、Kernel Soft-Margin SVM、拉格朗日乘子法(Lagrange Multiplier)、Lagrangian Dual Problem


Continue reading

機器學習技法 學習筆記 (1):我們將會學到什麼? 先見林再來見樹

Posted on January 12, 2017 in AI.ML. View: 10,890

有什麼特徵可以使用? / Embedding Numerous Features :Kernel Models / Combining Predictive Features:Aggregation Models / Distilling Implicit Features:Extraction Models


Continue reading

機器學習基石 學習筆記 (4):機器可以怎麼學得更好?

Posted on September 18, 2016 in AI.ML. View: 17,493

特徵轉換 / Overfitting / Regularization / Validation


Continue reading

機器學習基石 學習筆記 (3):機器可以怎麼樣學習?

Posted on August 07, 2016 in AI.ML. View: 7,995

Gradient Descent / Linear Regression / Logistic Regression / 使用迴歸法做二元分類問題


Continue reading

機器學習基石 學習筆記 (2):為什麼機器可以學習?

Posted on June 26, 2016 in AI.ML. View: 12,634

機器可以學習嗎? / \(E_{in}\)\(E_{out}\)的差異 / VC Generalization Bound / 機器要能學習的三要素 / 學習架構


Continue reading

機器學習基石 學習筆記 (1):何時可以使用機器學習?

Posted on June 06, 2016 in AI.ML. View: 13,702

什麼是Machine Learning / ML的使用時機 / 二元分類問題 / 多元學習


Continue reading